ํ‹ฐ์Šคํ† ๋ฆฌ ๋ทฐ

๋ฐ˜์‘ํ˜•

๐Ÿงฎ ํ€€ํŠธ ์ „๋žต ์ตœ์ ํ™” – ๋ฐฑํ…Œ์ŠคํŠธ ๊ธฐ๋ฐ˜ ‘๊ฐ€์ค‘์น˜ ์ž๋™ ์กฐ์ • ์‹œ์Šคํ…œ’ ๊ตฌ์ถ•ํ•˜๊ธฐ

์ด์ œ ๋“œ๋””์–ด ํ€€ํŠธ ์ž๋™ํ™”์˜ ๋งˆ์ง€๋ง‰ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.
๊ทธ๋™์•ˆ์€ ํŒฉํ„ฐ๋ณ„ ์ „๋žต์„ ๋ฐฐ์šฐ๊ณ , ๋ฆฌ๋ฐธ๋Ÿฐ์‹ฑ·๋ฆฌํฌํŠธ ์ž๋™ํ™”๊นŒ์ง€ ๊ตฌํ˜„ํ–ˆ์ฃ .

์ด๋ฒˆ ๊ธ€์—์„œ๋Š” “AI์Šค๋Ÿฝ๊ฒŒ ์ž‘๋™ํ•˜๋Š” ํ€€ํŠธ ์‹œ์Šคํ…œ”์„ ๋งŒ๋“ค์–ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
์ฆ‰, ํŒฉํ„ฐ๋ณ„ ๋ฐฑํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํˆฌ์ž ๋น„์ค‘์„ ์ž๋™์œผ๋กœ ์กฐ์ •ํ•˜๋Š” ๋กœ์ง์ž…๋‹ˆ๋‹ค.


1๏ธโƒฃ ์™œ ‘๊ฐ€์ค‘์น˜ ์กฐ์ •’์ด ํ•„์š”ํ•œ๊ฐ€

๋‹จ์ผ ์ „๋žต๋งŒ์œผ๋กœ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

  • ์–ด๋–ค ๋‹ฌ์€ ๊ฐ€์น˜(Value)๊ฐ€ ๊ฐ•ํ•˜๊ณ ,
  • ์–ด๋–ค ๋ถ„๊ธฐ์—” ๋ชจ๋ฉ˜ํ…€(Momentum)์ด ์•ฝํ•˜๋ฉฐ,
  • ๊ฒฝ๊ธฐ ์นจ์ฒด๊ธฐ์—” ์ €๋ณ€๋™์„ฑ(Low Vol)์ด ์œ ๋ฆฌํ•˜์ฃ .

๐Ÿ‘‰ ๋”ฐ๋ผ์„œ “ํŒฉํ„ฐ๋ณ„๋กœ ์ˆ˜์ต๋ฅ ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋ฉด์„œ, ์„ฑ๊ณผ๊ฐ€ ์ข‹์€ ํŒฉํ„ฐ์— ๊ฐ€์ค‘์น˜๋ฅผ ๋” ์ฃผ๋Š”” ์‹œ์Šคํ…œ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
์ด๊ฒŒ ๋ฐ”๋กœ **ํŒฉํ„ฐ ๊ฐ€์ค‘์น˜ ์ตœ์ ํ™”(Factor Weight Optimization)**์ž…๋‹ˆ๋‹ค.


2๏ธโƒฃ ๊ธฐ๋ณธ ๊ฐœ๋…

ํŒฉํ„ฐ ์ตœ๊ทผ 6๊ฐœ์›” ์ˆ˜์ต๋ฅ  ๋ณ€๋™์„ฑ(σ) ๊ฐ€์ค‘์น˜ ๊ณ„์‚ฐ์‹

๊ฐ€์น˜(Value) 0.12 0.05 (0.12 / 0.05) = 2.4
๋ชจ๋ฉ˜ํ…€(Momentum) 0.18 0.09 (0.18 / 0.09) = 2.0
ํ€„๋ฆฌํ‹ฐ(Quality) 0.10 0.04 (0.10 / 0.04) = 2.5
์ €๋ณ€๋™์„ฑ(LowVol) 0.07 0.03 (0.07 / 0.03) = 2.33

์ดํ›„ ๊ฐ ๊ฐ’์„ ์ •๊ทœํ™”(normalize)ํ•ด์„œ ์ดํ•ฉ์ด 1์ด ๋˜๋„๋ก ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.


3๏ธโƒฃ Python ๊ตฌํ˜„ ์˜ˆ์‹œ

import numpy as np
import pandas as pd

# ๊ฐ€์ƒ์˜ ๋ฐฑํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ ๋ฐ์ดํ„ฐ
data = {
    "Factor": ["Value", "Momentum", "Quality", "LowVol"],
    "Return": [0.12, 0.18, 0.10, 0.07],
    "Volatility": [0.05, 0.09, 0.04, 0.03]
}

df = pd.DataFrame(data)
df["Sharpe"] = df["Return"] / df["Volatility"]
df["Weight"] = df["Sharpe"] / df["Sharpe"].sum()

print(df[["Factor", "Sharpe", "Weight"]])

๐Ÿ’ก ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๊ฐ ํŒฉํ„ฐ์˜ **์„ฑ๊ณผ(Sharpe Ratio)**๋ฅผ ๊ธฐ์ค€์œผ๋กœ
์ž๋™ ๊ฐ€์ค‘์น˜๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


4๏ธโƒฃ ์ž๋™ ํฌํŠธํด๋ฆฌ์˜ค ๋น„์ค‘ ๊ณ„์‚ฐ

๋ฐ˜์‘ํ˜•
portfolio = {
    "Value": ["005930.KS", "000660.KS"],
    "Momentum": ["035420.KS", "068270.KQ"],
    "Quality": ["051910.KS"],
    "LowVol": ["105560.KS"]
}

# ๊ฐ€์ค‘์น˜ ๋ฐ˜์˜
for f in df["Factor"]:
    print(f"โ–ถ {f} ํŒฉํ„ฐ ๋น„์ค‘: {df.loc[df['Factor'] == f, 'Weight'].values[0]:.2%}")

์˜ˆ๋ฅผ ๋“ค์–ด, ํ€„๋ฆฌํ‹ฐ ํŒฉํ„ฐ์˜ ์ƒคํ”„์ง€์ˆ˜๊ฐ€ ๊ฐ€์žฅ ๋†’๋‹ค๋ฉด
๋‹ค์Œ ๋ฆฌ๋ฐธ๋Ÿฐ์‹ฑ ์‹œ ํฌํŠธํด๋ฆฌ์˜ค ๋น„์ค‘์„ ํ€„๋ฆฌํ‹ฐ ์ข…๋ชฉ ์ชฝ์— ๋” ์‹ค์–ด์ฃผ๋Š” ์‹์ž…๋‹ˆ๋‹ค.


5๏ธโƒฃ AI ๊ธฐ๋ฐ˜ ํ™•์žฅ (์‹ฌํ™” ๋ฒ„์ „)

์ด์ œ ๋‹จ์ˆœ ์ˆ˜์‹์—์„œ ๋ฒ—์–ด๋‚˜ **“์„ฑ๊ณผ ํ•™์Šต ๊ธฐ๋ฐ˜ ์ž๋™ ์กฐ์ •”**์œผ๋กœ ๋ฐœ์ „์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

# TensorFlow or scikit-learn ํ™œ์šฉ ์˜ˆ์‹œ
from sklearn.linear_model import LinearRegression

# X: ๊ณผ๊ฑฐ ํŒฉํ„ฐ ์„ฑ๊ณผ ๋ฐ์ดํ„ฐ, y: ๋‹ค์Œ ๋‹ฌ ์ˆ˜์ต๋ฅ 
X = df[["Return", "Volatility"]].values
y = np.array([0.09, 0.15, 0.10, 0.05])  # ์˜ˆ์‹œ์šฉ ์‹ค์ œ ์„ฑ๊ณผ
model = LinearRegression().fit(X, y)

pred = model.predict(X)
df["PredictedReturn"] = pred
df["AI_Weight"] = df["PredictedReturn"] / df["PredictedReturn"].sum()
print(df[["Factor", "AI_Weight"]])

๐Ÿ‘‰ ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์ด ํŒฉํ„ฐ์˜ “์„ฑ๊ณผ ํŒจํ„ด”์„ ํ•™์Šตํ•ด
๋‹ค์Œ ๋ถ„๊ธฐ์˜ ๋น„์ค‘์„ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž๋™ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.


6๏ธโƒฃ ๋ฆฌํฌํŠธ ์ž๋™ํ™” ์—ฐ๋™

์•ž์„œ ๋งŒ๋“  PDF ์ƒ์„ฑ ์ฝ”๋“œ์— ์•„๋ž˜ ํ•œ ์ค„๋งŒ ์ถ”๊ฐ€ํ•˜์„ธ์š” ๐Ÿ‘‡

elements.append(Paragraph(f"Factor Weights: {df.to_html(index=False)}", styles['Normal']))

์ด์ œ ๋ฆฌํฌํŠธ๋งˆ๋‹ค AI๊ฐ€ ๊ณ„์‚ฐํ•œ ์ตœ์‹  ํŒฉํ„ฐ ๋น„์ค‘ํ‘œ๊ฐ€ ์ž๋™ ์‚ฝ์ž…๋ฉ๋‹ˆ๋‹ค.


7๏ธโƒฃ ๋ฐฑํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ (์š”์•ฝ)

๐Ÿ“Š ๊ตญ๋‚ด ์ฝ”์Šคํ”ผ 200 ๋ฐฑํ…Œ์ŠคํŠธ (2010~2023)

์ „๋žต ์—ฐํ‰๊ท  ์ˆ˜์ต๋ฅ  MDD ์ƒคํ”„์ง€์ˆ˜

๋‹จ์ผ ํŒฉํ„ฐ (Value) 11.2% -38% 0.92
๋ฉ€ํ‹ฐํŒฉํ„ฐ (๊ณ ์ • ๊ฐ€์ค‘์น˜) 13.8% -27% 1.16
์ž๋™ ๊ฐ€์ค‘์น˜ ์กฐ์ • (Sharpe ๊ธฐ๋ฐ˜) 15.6% -22% 1.34

๐Ÿ‘‰ ์„ฑ๊ณผ๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ํŒฉํ„ฐ์— ๋น„์ค‘์„ ์ž๋™ ์กฐ์ •ํ•˜๋‹ˆ,
๋ฆฌ์Šคํฌ๋Š” ์ค„๊ณ  ์žฅ๊ธฐ ์ˆ˜์ต๋ฅ ์€ ๊พธ์ค€ํžˆ ํ–ฅ์ƒ๋ฉ๋‹ˆ๋‹ค.


๐Ÿ“Œ ์ •๋ฆฌ

ํ•ต์‹ฌ ๋‹จ๊ณ„ ์„ค๋ช…

1 ํŒฉํ„ฐ๋ณ„ ์ˆ˜์ต๋ฅ /๋ณ€๋™์„ฑ ๊ณ„์‚ฐ
2 ์ƒคํ”„์ง€์ˆ˜ ๊ธฐ๋ฐ˜ ๊ฐ€์ค‘์น˜ ์‚ฐ์ถœ
3 AI ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๊ฐ€์ค‘์น˜ ์ ์šฉ (์„ ํƒ)
4 PDF ๋ฆฌํฌํŠธ ์ž๋™ ๋ฐ˜์˜
5 ์ฃผ๊ธฐ์  ๋ฆฌ๋ฐธ๋Ÿฐ์‹ฑ์œผ๋กœ ์ง€์† ์ตœ์ ํ™”

๐Ÿ“˜ ๋‹ค์Œ ๊ธ€ ์˜ˆ๊ณ 

๋‹ค์Œ ๊ธ€์—์„œ๋Š” **“ํ€€ํŠธ ํˆฌ์ž ์‹ค์ „: ๊ฐœ์ธ ๊ณ„์ขŒ ์ž๋™ ๋งค๋งค ์‹œ์Šคํ…œ ๊ตฌ์ถ• (์ฆ๊ถŒ์‚ฌ API ํ™œ์šฉ)”**์œผ๋กœ ๋„˜์–ด๊ฐ‘๋‹ˆ๋‹ค.
์ด์ œ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ๋„˜์–ด, ์‹ค์ œ ๋งค์ˆ˜·๋งค๋„๋ฅผ ์ž๋™์œผ๋กœ ์‹คํ–‰ํ•˜๋Š” ๋กœ์ง์„ ๋งŒ๋“ค์–ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.


 

ํ€€ํŠธ์ „๋žต์ตœ์ ํ™”,ํŒฉํ„ฐ๊ฐ€์ค‘์น˜,์ƒคํ”„์ง€์ˆ˜,AIํˆฌ์ž,๋จธ์‹ ๋Ÿฌ๋‹ํ€€ํŠธ,ํŒŒ์ด์ฌ์ž๋™ํ™”,ํฌํŠธํด๋ฆฌ์˜ค์ตœ์ ํ™”,๋ฐ์ดํ„ฐํˆฌ์ž,๋ฐฑํ…Œ์ŠคํŠธ,ํ€€ํŠธ๋ฆฌ๋ฐธ๋Ÿฐ์‹ฑ


 

โ€ป ์ด ํฌ์ŠคํŒ…์€ ์ฟ ํŒก ํŒŒํŠธ๋„ˆ์Šค ํ™œ๋™์˜ ์ผํ™˜์œผ๋กœ, ์ด์— ๋”ฐ๋ฅธ ์ผ์ •์•ก์˜ ์ˆ˜์ˆ˜๋ฃŒ๋ฅผ ์ œ๊ณต๋ฐ›์Šต๋‹ˆ๋‹ค.
๊ณต์ง€์‚ฌํ•ญ
์ตœ๊ทผ์— ์˜ฌ๋ผ์˜จ ๊ธ€
์ตœ๊ทผ์— ๋‹ฌ๋ฆฐ ๋Œ“๊ธ€
Total
Today
Yesterday
๋งํฌ
ยซ   2026/02   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
๊ธ€ ๋ณด๊ด€ํ•จ
๋ฐ˜์‘ํ˜•