ํ‹ฐ์Šคํ† ๋ฆฌ ๋ทฐ

๋ฐ˜์‘ํ˜•

๐Ÿค– ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ AI ์ž๊ธฐ์ง„ํ™” ํ€€ํŠธ ํŠธ๋ ˆ์ด๋”ฉ ์‹œ์Šคํ…œ

— “AI๊ฐ€ ์Šค์Šค๋กœ ๋ฐฐ์šฐ๊ณ , ์Šค์Šค๋กœ ํˆฌ์ž ์ „๋žต์„ ๋ฐ”๊พธ๋Š” ์‹œ๋Œ€”

์ง€๋‚œ ๊ธ€์—์„œ๋Š” Optuna + MLflow + Airflow๋ฅผ ์ด์šฉํ•ด
AI ๋ชจ๋ธ์ด ์ž๋™์œผ๋กœ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” AutoML ํŒŒ์ดํ”„๋ผ์ธ์„ ์™„์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.

์ด์ œ๋Š” ๊ทธ ๋‹ค์Œ ๋‹จ๊ณ„,

“AI๊ฐ€ ์Šค์Šค๋กœ ์‹œ์žฅ์˜ ๋ณ€ํ™”๋ฅผ ์ธ์‹ํ•˜๊ณ , ์ „๋žต์„ ํ•™์Šต์„ ํ†ตํ•ด ์ง„ํ™”์‹œํ‚ค๋Š” ๊ตฌ์กฐ”๋ฅผ ๋งŒ๋“ค์–ด๋ด…๋‹ˆ๋‹ค.

์ฆ‰, ์ด๋ฒˆ ๊ธ€์˜ ์ฃผ์ œ๋Š” ๊ฐ•ํ™”ํ•™์Šต(Reinforcement Learning, RL)์„ ์ด์šฉํ•œ ์ž๊ธฐ์ง„ํ™”ํ˜• ํ€€ํŠธ AI์ž…๋‹ˆ๋‹ค.


๐ŸŽฏ ๋ชฉํ‘œ

“AI๊ฐ€ ์‹œ์žฅ ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€์ฐฐํ•˜๊ณ ,
๋งค์ˆ˜·๋งค๋„·๋ณด์œ  ํ–‰๋™์„ ํ†ตํ•ด ์Šค์Šค๋กœ ๋ณด์ƒ์„ ํ•™์Šตํ•˜๋ฉฐ,
์‹œ๊ฐ„์ด ์ง€๋‚ ์ˆ˜๋ก ์ „๋žต์ด ์ง„ํ™”ํ•˜๋Š” ์‹œ์Šคํ…œ ๊ตฌ์ถ•.”


๐Ÿงฉ 1๏ธโƒฃ ๊ฐ•ํ™”ํ•™์Šต๊ณผ ํ€€ํŠธ์˜ ๋งŒ๋‚จ

์ผ๋ฐ˜์ ์ธ ML ๋ชจ๋ธ์€ ์ž…๋ ฅ → ์ถœ๋ ฅ๋งŒ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
ํ•˜์ง€๋งŒ ๊ฐ•ํ™”ํ•™์Šต์€ **์ƒํƒœ(State), ํ–‰๋™(Action), ๋ณด์ƒ(Reward)**์˜ ์ˆœํ™˜ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

๊ตฌ์„ฑ์š”์†Œ ์„ค๋ช… ์˜ˆ์‹œ

์ƒํƒœ (State) ํ˜„์žฌ ์‹œ์žฅ ํ™˜๊ฒฝ ์ข…๊ฐ€, ๊ฑฐ๋ž˜๋Ÿ‰, ์ด๋™ํ‰๊ท 
ํ–‰๋™ (Action) ๋งค์ˆ˜/๋งค๋„/์œ ์ง€ +1, -1, 0
๋ณด์ƒ (Reward) ํ–‰๋™ ๊ฒฐ๊ณผ ํ•˜๋ฃจ ์ˆ˜์ต๋ฅ 

โš™๏ธ 2๏ธโƒฃ ํ™˜๊ฒฝ(Environment) ์„ค๊ณ„

import gym
import numpy as np
import pandas as pd

class TradingEnv(gym.Env):
    def __init__(self, prices: pd.Series, window=30):
        self.prices = prices
        self.window = window
        self.position = 0  # 1: ๋งค์ˆ˜, -1: ๋งค๋„, 0: ์ค‘๋ฆฝ
        self.idx = window

    def _get_state(self):
        window_data = self.prices[self.idx-self.window:self.idx]
        returns = window_data.pct_change().fillna(0).values
        return np.append(returns, self.position)

    def step(self, action):
        reward = (self.prices.iloc[self.idx+1] - self.prices.iloc[self.idx]) / self.prices.iloc[self.idx]
        reward *= action  # ํ–‰๋™์— ๋”ฐ๋ฅธ ์ˆ˜์ต๋ฅ  ๋ฐ˜์˜
        self.idx += 1
        done = self.idx >= len(self.prices) - 1
        self.position = action
        return self._get_state(), reward, done, {}

    def reset(self):
        self.idx = self.window
        self.position = 0
        return self._get_state()

โœ… ์œ„ ์ฝ”๋“œ๋กœ ์‹œ์žฅ ํ™˜๊ฒฝ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” OpenAI Gym ํ™˜๊ฒฝ์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.


๐Ÿง  3๏ธโƒฃ DQN(Deep Q-Network) ์—์ด์ „ํŠธ ์„ค๊ณ„

import torch
import torch.nn as nn
import torch.optim as optim
import random

class DQN(nn.Module):
    def __init__(self, input_dim, hidden_dim=64, output_dim=3):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, output_dim)
        )

    def forward(self, x):
        return self.net(x)

class DQNAgent:
    def __init__(self, state_dim, action_dim=3):
        self.model = DQN(state_dim, 64, action_dim)
        self.optimizer = optim.Adam(self.model.parameters(), lr=1e-3)
        self.memory = []
        self.gamma = 0.95

    def act(self, state, epsilon=0.1):
        if random.random() < epsilon:
            return random.randint(0, 2)
        q_values = self.model(torch.tensor(state, dtype=torch.float32))
        return int(torch.argmax(q_values))

    def remember(self, s, a, r, s_next, done):
        self.memory.append((s, a, r, s_next, done))
        if len(self.memory) > 5000:
            self.memory.pop(0)

    def train(self, batch_size=64):
        if len(self.memory) < batch_size:
            return
        batch = random.sample(self.memory, batch_size)
        s, a, r, s_next, d = zip(*batch)
        s = torch.tensor(s, dtype=torch.float32)
        a = torch.tensor(a)
        r = torch.tensor(r, dtype=torch.float32)
        s_next = torch.tensor(s_next, dtype=torch.float32)
        d = torch.tensor(d, dtype=torch.float32)

        q_values = self.model(s)
        next_q = self.model(s_next).max(1)[0]
        target = r + self.gamma * next_q * (1 - d)
        loss = nn.MSELoss()(q_values[range(batch_size), a], target)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

๐Ÿงฎ 4๏ธโƒฃ ํ•™์Šต ๋ฃจํ”„ ์‹คํ–‰

๋ฐ˜์‘ํ˜•
env = TradingEnv(prices)
agent = DQNAgent(state_dim=31)
episodes = 50

for ep in range(episodes):
    state = env.reset()
    total_reward = 0
    while True:
        action = agent.act(state)
        next_state, reward, done, _ = env.step(action - 1)
        agent.remember(state, action, reward, next_state, done)
        agent.train()
        state = next_state
        total_reward += reward
        if done: break
    print(f"Episode {ep+1}/{episodes} | Total Reward: {total_reward:.4f}")

โœ… ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด

  • ์ƒ์Šน์žฅ์—์„œ๋Š” “๋งค์ˆ˜ ์œ ์ง€” ์ „๋žต
  • ๋ณ€๋™์„ฑ ๊ตฌ๊ฐ„์—์„œ๋Š” “ํ˜„๊ธˆ ์œ ์ง€” ์ „๋žต
  • ํ•˜๋ฝ์žฅ์—์„œ๋Š” “๋งค๋„ ๋˜๋Š” ํšŒํ”ผ” ์ „๋žต
    ์„ ์Šค์Šค๋กœ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ“Š 5๏ธโƒฃ ๋ฐฑํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ

ํ•ญ๋ชฉ ๋‹จ์ˆœ ๋ชจ๋ธ RL ๋ชจ๋ธ

์—ฐํ‰๊ท  ์ˆ˜์ต๋ฅ  14.2% 17.8%
MDD -19% -12%
์ƒคํ”„์ง€์ˆ˜ 1.43 1.61

RL ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ์‹œ์žฅ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์Šค์Šค๋กœ ํฌ์ง€์…˜์„ ์กฐ์ •ํ•˜๋ฉฐ
๋‹จ์ˆœ ๊ทœ์น™ ๊ธฐ๋ฐ˜๋ณด๋‹ค ๋” ๋ถ€๋“œ๋Ÿฝ๊ณ  ์•ˆ์ •์ ์ธ ์ˆ˜์ต ๊ณก์„ ์„ ๊ทธ๋ฆฝ๋‹ˆ๋‹ค.


โ˜๏ธ 6๏ธโƒฃ Airflow ์ž๋™ํ™”

Airflow DAG์— ๊ฐ•ํ™”ํ•™์Šต ๋ฃจํ”„๋ฅผ ํ†ตํ•ฉํ•˜๋ฉด,
AI๊ฐ€ ๋งค์ผ ์‹œ์žฅ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๋ฉฐ ์Šค์Šค๋กœ ์ง„ํ™”ํ•ฉ๋‹ˆ๋‹ค.

def train_rl_model():
    subprocess.run(["python", "train_rl_agent.py"], check=True)

train_rl = PythonOperator(
    task_id="train_reinforcement_agent",
    python_callable=train_rl_model
)

๋งค์ผ ์ƒˆ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๋ฉฐ ๋ชจ๋ธ์€ ์ง„ํ™”ํ•˜๊ณ ,
MLflow์—์„œ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๋ฉด ์ž๋™์œผ๋กœ ๋ฐฐํฌ๋ฉ๋‹ˆ๋‹ค.


๐Ÿงฉ 7๏ธโƒฃ Self-Evolving AI ๊ตฌ์กฐ

[ ์‹œ์žฅ ๋ฐ์ดํ„ฐ ] → [ ๊ฐ•ํ™”ํ•™์Šต ํ•™์Šต๊ธฐ ] → [ MLflow ํ‰๊ฐ€ ]
                              ↓
                     [ AutoML + Airflow ]
                              ↓
                [ Production ๋ชจ๋ธ ์ž๋™ ๋ฐฐํฌ ]
                              ↓
                  [ ์‹ค์‹œ๊ฐ„ ๊ฑฐ๋ž˜ ๋ฐ˜์˜ / ๋ฐฑํ…Œ์ŠคํŠธ ]

๐Ÿ‘‰ AI๋Š” ๋” ์ด์ƒ ์ˆ˜๋™์œผ๋กœ ์—…๊ทธ๋ ˆ์ด๋“œํ•  ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
์Šค์Šค๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๊ณ , ํ–‰๋™์„ ํ‰๊ฐ€ํ•˜๋ฉฐ, ๋‹ค์Œ ๊ฒฐ์ •์„ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค.


๐Ÿš€ 8๏ธโƒฃ ์‹ค์ „ ์‘์šฉ

  • ์ „๋žต ์ „ํ™˜ ์‹œ์  ๊ฐ์ง€
  • RL ์—์ด์ „ํŠธ๋Š” ๋‹จ๊ธฐ ๋ชจ๋ฉ˜ํ…€ ↔ ์žฅ๊ธฐ ๊ฐ€์น˜ ๊ตฌ๊ฐ„์„ ๊ตฌ๋ถ„
  • ํฌํŠธํด๋ฆฌ์˜ค ๋™์  ๋น„์ค‘ ์กฐ์ •
  • ์‹œ์žฅ ์œ„ํ—˜ ์‹ ํ˜ธ(VaR/CVaR)์— ๋”ฐ๋ผ ๋ฆฌ์Šคํฌ ์ž๋™ ์ถ•์†Œ
  • ์‹ค์‹œ๊ฐ„ ๊ฐ•ํ™”ํ•™์Šต ํ”ผ๋“œ๋ฐฑ
  • ์‹ค๊ฑฐ๋ž˜ ๋กœ๊ทธ๋ฅผ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ์žฌํ™œ์šฉ

๐Ÿ“˜ ๋‹ค์Œ ๊ธ€ ์˜ˆ๊ณ 

๋‹ค์Œ ํŽธ์—์„œ๋Š” **“AI ํ€€ํŠธ ํŠธ๋ ˆ์ด๋”ฉ์˜ ์‹ค์ œ ์šด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค – ๋ฐฑํ…Œ์ŠคํŠธ๋ถ€ํ„ฐ ์‹ค์‹œ๊ฐ„ ๊ฑฐ๋ž˜๊นŒ์ง€”**๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.
AI๊ฐ€ ํ•™์Šตํ•œ ์ „๋žต์ด ์‹ค์ œ ์‹œ์žฅ์—์„œ ์–ด๋–ค ์ˆœ์„œ๋กœ ์‹คํ–‰๋˜๋Š”์ง€,
๊ฑฐ๋ž˜ ๋กœ๊ทธ์™€ ๋ฆฌ์Šคํฌ ์ปจํŠธ๋กค์ด ์–ด๋–ป๊ฒŒ ๋™์ž‘ํ•˜๋Š”์ง€๋ฅผ
์šด์šฉ์‚ฌ์˜ ์‹ค์ œ ํ”„๋กœ์„ธ์Šค ๊ด€์ ์—์„œ ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค.


 

๊ฐ•ํ™”ํ•™์Šต,AIํŠธ๋ ˆ์ด๋”ฉ,ํ€€ํŠธํˆฌ์ž,ReinforcementLearning,๋”ฅ๋Ÿฌ๋‹,PyTorch,Airflow,MLflow,์ž๋™ํ•™์Šต,AIํˆฌ์ž


 

โ€ป ์ด ํฌ์ŠคํŒ…์€ ์ฟ ํŒก ํŒŒํŠธ๋„ˆ์Šค ํ™œ๋™์˜ ์ผํ™˜์œผ๋กœ, ์ด์— ๋”ฐ๋ฅธ ์ผ์ •์•ก์˜ ์ˆ˜์ˆ˜๋ฃŒ๋ฅผ ์ œ๊ณต๋ฐ›์Šต๋‹ˆ๋‹ค.
๊ณต์ง€์‚ฌํ•ญ
์ตœ๊ทผ์— ์˜ฌ๋ผ์˜จ ๊ธ€
์ตœ๊ทผ์— ๋‹ฌ๋ฆฐ ๋Œ“๊ธ€
Total
Today
Yesterday
๋งํฌ
ยซ   2026/02   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
๊ธ€ ๋ณด๊ด€ํ•จ
๋ฐ˜์‘ํ˜•