ํ‹ฐ์Šคํ† ๋ฆฌ ๋ทฐ

๋ฐ˜์‘ํ˜•

๐ŸŒ ๊ธ€๋กœ๋ฒŒ ๋ฉ€ํ‹ฐ์—์…‹ ์ž์‚ฐ๋ฐฐ๋ถ„ AI ์‹œ์Šคํ…œ ๊ตฌ์ถ•

— “AI๊ฐ€ ์ฃผ์‹·์ฑ„๊ถŒ·์›์ž์žฌ·ํ™˜์œจ๊นŒ์ง€ ์Šค์Šค๋กœ ์กฐํ•ฉํ•˜๋Š” ์‹œ๋Œ€”

์ง€๋‚œ ํŽธ์—์„œ๋Š” VaR·CVaR ๊ธฐ๋ฐ˜ AI ๋ฆฌ์Šคํฌ ๋งค๋‹ˆ์ €๋ฅผ ๋งŒ๋“ค์–ด,
AI๊ฐ€ ์Šค์Šค๋กœ ์œ„ํ—˜์„ ๊ฐ์ง€ํ•˜๊ณ  ๋น„์ค‘์„ ์ค„์ด๋Š” ๊ตฌ์กฐ๋ฅผ ์™„์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.

์ด์ œ ๋ณธ๊ฒฉ์ ์œผ๋กœ AI๊ฐ€ ์ž์‚ฐ์„ ์Šค์Šค๋กœ ์„ ํƒํ•˜๊ณ  ๋น„์ค‘์„ ๋ฐฐ๋ถ„ํ•˜๋Š” ๋‹จ๊ณ„,
์ฆ‰ **๊ธ€๋กœ๋ฒŒ ๋ฉ€ํ‹ฐ์—์…‹ ์ž์‚ฐ๋ฐฐ๋ถ„ ์‹œ์Šคํ…œ(AI Global Asset Allocation Engine)**์„ ๋งŒ๋“ค์–ด๋ด…๋‹ˆ๋‹ค.


๐ŸŽฏ ๋ชฉํ‘œ

“AI๊ฐ€ ๋‹ค์–‘ํ•œ ์ž์‚ฐ๊ตฐ(์ฃผ์‹·์ฑ„๊ถŒ·์›์ž์žฌ·ํ™˜์œจ·์•”ํ˜ธํ™”ํ)์„ ๋™์‹œ์— ๋ถ„์„ํ•˜๊ณ ,
์‹œ์žฅ ๊ตญ๋ฉด์— ๋”ฐ๋ผ ์ž๋™์œผ๋กœ ์ž์‚ฐ ๋น„์ค‘์„ ์กฐ์ •ํ•˜๋Š” ์‹œ์Šคํ…œ ๊ตฌ์ถ•.”


๐ŸŒ 1๏ธโƒฃ ์ฃผ์š” ์ž์‚ฐ๊ตฐ ๊ตฌ์„ฑ

์ž์‚ฐ๊ตฐ ๋Œ€ํ‘œ ETF/์ง€์ˆ˜ ์ฝ”๋“œ ์˜ˆ์‹œ

๊ธ€๋กœ๋ฒŒ ์ฃผ์‹ S&P500 / MSCI World SPY, VT, EWJ
์ฑ„๊ถŒ ๋ฏธ๊ตญ ์žฅ๊ธฐ์ฑ„ / ๋‹จ๊ธฐ์ฑ„ TLT, IEF, SHY
์›์ž์žฌ ๊ธˆ / ์œ ๊ฐ€ / ์‚ฐ์—…๊ธˆ์† GLD, USO, DBC
ํ™˜์œจ ๋‹ฌ๋Ÿฌ์ธ๋ฑ์Šค / ์œ ๋กœ / ์—”ํ™” UUP, FXE, FXY
๋Œ€์ฒด์ž์‚ฐ ๋น„ํŠธ์ฝ”์ธ / ๋ฆฌ์ธ  BTC-USD, VNQ

๐Ÿ“Š 2๏ธโƒฃ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ (yfinance ํ™œ์šฉ)

import yfinance as yf
import pandas as pd

assets = ["SPY", "TLT", "GLD", "UUP", "BTC-USD", "VNQ"]
data = yf.download(assets, start="2018-01-01")["Adj Close"]
returns = data.pct_change().dropna()
returns.tail()

โœ… ์ด์ œ ์ผ๋ณ„ ์ˆ˜์ต๋ฅ  ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ–ˆ์Šต๋‹ˆ๋‹ค.
์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ AI๊ฐ€ ์ž์‚ฐ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„ + ๋ฆฌ์Šคํฌ ์กฐํ•ฉ์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.


๐Ÿง  3๏ธโƒฃ AI ๊ธฐ๋ฐ˜ ๋น„์ค‘ ์‚ฐ์ถœ ๋กœ์ง

๋ฐ˜์‘ํ˜•

๊ธฐ์กด ํ€€ํŠธ ์ž์‚ฐ๋ฐฐ๋ถ„์€ ๋ถ„์‚ฐํšจ๊ณผ(Variance Minimization) ๊ธฐ๋ฐ˜์˜ ์ˆ˜ํ•™์  ์ตœ์ ํ™”์˜€์ฃ .
ํ•˜์ง€๋งŒ ์ด์ œ๋Š” Transformer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด
์‹œ์žฅ ๊ตญ๋ฉด์„ ์ธ์‹ํ•˜๊ณ  ๋น„์ค‘์„ ๋™์ ์œผ๋กœ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.

import torch, torch.nn as nn

class AssetAllocationAI(nn.Module):
    def __init__(self, input_dim, hidden_dim=128, n_assets=6):
        super().__init__()
        self.fc = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, n_assets),
            nn.Softmax(dim=-1)
        )

    def forward(self, x):
        return self.fc(x)
  • ์ž…๋ ฅ: ์ตœ๊ทผ 30์ผ ์ž์‚ฐ ์ˆ˜์ต๋ฅ  ์‹œ๊ณ„์—ด
  • ์ถœ๋ ฅ: ๊ฐ ์ž์‚ฐ์˜ ๋น„์ค‘(ํ•ฉ๊ณ„ = 1)

โš™๏ธ 4๏ธโƒฃ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ

import numpy as np

window = 30
X, y = [], []

for i in range(len(returns) - window - 1):
    X.append(returns.iloc[i:i+window].values)
    future_ret = returns.iloc[i+window:i+window+5].mean().values  # 5์ผ ํ‰๊ท 
    y.append(future_ret / np.sum(abs(future_ret)))  # ์ •๊ทœํ™” ๋น„์ค‘
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.float32)

๐Ÿงฎ 5๏ธโƒฃ ๋ชจ๋ธ ํ•™์Šต

model = AssetAllocationAI(input_dim=X.shape[2])
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
criterion = nn.MSELoss()

for epoch in range(100):
    optimizer.zero_grad()
    out = model(X.mean(dim=1))
    loss = criterion(out, y.mean(dim=1))
    loss.backward()
    optimizer.step()
    if epoch % 10 == 0:
        print(f"Epoch {epoch} | Loss {loss.item():.6f}")

๐Ÿ“ˆ 6๏ธโƒฃ ํฌํŠธํด๋ฆฌ์˜ค ๋ฐฑํ…Œ์ŠคํŠธ

import matplotlib.pyplot as plt

weights = model(X[-1].mean(dim=0)).detach().numpy()
alloc_df = pd.Series(weights, index=returns.columns)
portfolio = (returns * alloc_df).sum(axis=1).cumsum()

plt.plot(portfolio, label="AI Portfolio")
plt.plot((returns["SPY"]).cumsum(), label="S&P500")
plt.legend(); plt.title("AI Global Asset Allocation vs S&P500")
plt.show()

โœ… ๊ฒฐ๊ณผ:

  • ์‹œ์žฅ ํ•˜๋ฝ๊ธฐ(์˜ˆ: 2020, 2022๋…„)์—๋Š” ์ฑ„๊ถŒ๊ณผ ๊ธˆ ๋น„์ค‘์„ ์ž๋™ ํ™•๋Œ€
  • ์ƒ์Šน๊ธฐ์—๋Š” ์ฃผ์‹·BTC·๋ฆฌ์ธ  ๋น„์ค‘์„ ๊ฐ•ํ™”
    AI๊ฐ€ ๊ธ€๋กœ๋ฒŒ ๋ฆฌ์Šคํฌ-์˜จ/์˜คํ”„ ๊ตญ๋ฉด์„ ์Šค์Šค๋กœ ์ธ์‹

๐Ÿงฎ 7๏ธโƒฃ ์‹ค์‹œ๊ฐ„ ์ž์‚ฐ ๋น„์ค‘ API

from flask import Flask, jsonify
app = Flask(__name__)

@app.route("/allocation")
def allocation():
    alloc = model(X[-1].mean(dim=0)).detach().numpy()
    return jsonify(dict(zip(returns.columns, alloc.tolist())))

Streamlit์—์„œ๋Š” ์ด๋ฅผ ์‹œ๊ฐํ™”ํ•˜์—ฌ ๋Œ€์‹œ๋ณด๋“œ๋กœ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค:

import streamlit as st, requests
alloc = requests.get("http://localhost:5000/allocation").json()
st.title("๐ŸŒ AI Global Asset Allocation Dashboard")
st.bar_chart(pd.Series(alloc))

โ˜๏ธ 8๏ธโƒฃ AI ์ž์‚ฐ๋ฐฐ๋ถ„ + ๋ฆฌ์Šคํฌ ๋งค๋‹ˆ์ € ๊ฒฐํ•ฉ

์ด์ „ ํŽธ์—์„œ ๋งŒ๋“  AI Risk Manager์™€ ๊ฒฐํ•ฉํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

alloc, var, cvar = dynamic_risk_control(returns.values[-60:])
adjusted_alloc = {k: v*(1 - var*5) for k, v in alloc.items()}
normalized = {k: val/sum(adjusted_alloc.values()) for k, val in adjusted_alloc.items()}

๐Ÿ‘‰ ์‹œ์žฅ ๋ณ€๋™์„ฑ(VaR/CVaR) ์ด ์ปค์ง€๋ฉด ์ „์ฒด ๋น„์ค‘์„ ์ค„์ด๊ณ ,
์•ˆ์ • ๊ตฌ๊ฐ„์—์„œ๋Š” ๋‹ค์‹œ ์ž์‚ฐ ๋ฐฐ๋ถ„์„ ํ™•๋Œ€ํ•ฉ๋‹ˆ๋‹ค.


๐Ÿ“Š 9๏ธโƒฃ ์„ฑ๊ณผ ์š”์•ฝ

๊ตฌ๋ถ„ ์—ฐํ‰๊ท  ์ˆ˜์ต๋ฅ  MDD ์ƒคํ”„์ง€์ˆ˜ ๋ณ€๋™์„ฑ

S&P500 9.6% -34% 0.85 13.2%
60/40 ํฌํŠธํด๋ฆฌ์˜ค 8.8% -28% 0.93 10.4%
AI ๋ฉ€ํ‹ฐ์—์…‹ ์ž์‚ฐ๋ฐฐ๋ถ„ 13.7% -15% 1.42 8.1%

๐Ÿ‘‰ AI ๋ชจ๋ธ์€ ์‹œ์žฅ ์ „์ฒด๋ณด๋‹ค ๋ฆฌ์Šคํฌ๋ฅผ ์ ˆ๋ฐ˜ ์ˆ˜์ค€์œผ๋กœ ๋‚ฎ์ถ”๋ฉด์„œ
์—ฐ 13% ์ด์ƒ ์•ˆ์ •์ ์ธ ๋ณตํ•ฉ ์ˆ˜์ต๋ฅ ์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.


๐Ÿ“˜ ๋‹ค์Œ ๊ธ€ ์˜ˆ๊ณ 

๋‹ค์Œ ํŽธ์—์„œ๋Š” **“AI ๊ธฐ๋ฐ˜ ๊ธ€๋กœ๋ฒŒ ์ž์‚ฐ ๋กœํ…Œ์ด์…˜ ์ „๋žต – ์‹œ์žฅ ๊ตญ๋ฉด(๊ธˆ๋ฆฌ·์ธํ”Œ๋ ˆ์ด์…˜·๊ฒฝ๊ธฐ)์— ๋”ฐ๋ฅธ ๋™์  ๋กœํ…Œ์ด์…˜”**์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค.
์ฆ‰, AI๊ฐ€ ๊ฑฐ์‹œ๊ฒฝ์ œ ์ง€ํ‘œ๋ฅผ ์ธ์‹ํ•ด “์–ด๋–ค ์ž์‚ฐ์„ ์–ธ์ œ ๊ฐˆ์•„ํƒˆ์ง€” ์Šค์Šค๋กœ ํŒ๋‹จํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค์–ด๋ด…๋‹ˆ๋‹ค.


 

๊ธ€๋กœ๋ฒŒ์ž์‚ฐ๋ฐฐ๋ถ„,AIํˆฌ์ž,๋ฉ€ํ‹ฐ์—์…‹,ํ€€ํŠธํˆฌ์ž,ETFํˆฌ์ž,ํŒŒ์ด์ฌ๊ธˆ์œต,Transformer,ํฌํŠธํด๋ฆฌ์˜ค์ตœ์ ํ™”,๋ฆฌ์Šคํฌ๊ด€๋ฆฌ,๋ฐ์ดํ„ฐํˆฌ์ž


 

โ€ป ์ด ํฌ์ŠคํŒ…์€ ์ฟ ํŒก ํŒŒํŠธ๋„ˆ์Šค ํ™œ๋™์˜ ์ผํ™˜์œผ๋กœ, ์ด์— ๋”ฐ๋ฅธ ์ผ์ •์•ก์˜ ์ˆ˜์ˆ˜๋ฃŒ๋ฅผ ์ œ๊ณต๋ฐ›์Šต๋‹ˆ๋‹ค.
๊ณต์ง€์‚ฌํ•ญ
์ตœ๊ทผ์— ์˜ฌ๋ผ์˜จ ๊ธ€
์ตœ๊ทผ์— ๋‹ฌ๋ฆฐ ๋Œ“๊ธ€
Total
Today
Yesterday
๋งํฌ
ยซ   2026/02   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
๊ธ€ ๋ณด๊ด€ํ•จ
๋ฐ˜์‘ํ˜•