📌 JAX를 활용한 신경망 모델 구축 - MLP를 이용한 손글씨 인식 (MNIST)🚀 JAX로 신경망 모델 만들기이전 글에서는 JAX의 자동 미분과 JIT 컴파일의 기본 사용법을 배웠습니다.이번에는 이를 활용하여 간단한 다층 퍼셉트론(MLP) 모델을 구축하여 손글씨 데이터(MNIST)를 분류해보겠습니다.📝 1. 데이터셋 준비💾 MNIST 데이터 불러오기JAX에서는 직접 데이터를 불러와야 하므로 tensorflow_datasets를 사용하여 데이터를 로드합니다.pip install tensorflow-datasetsimport tensorflow_datasets as tfdsimport jax.numpy as jnp# MNIST 데이터 불러오기ds = tfds.load('mnist', split='..
📌 JAX의 핵심 기능 - 자동 미분과 JIT 컴파일로 성능 극대화🚀 JAX의 핵심 기능 둘러보기JAX는 다양한 기능을 제공하지만, 특히 **자동 미분(Automatic Differentiation)**과 **JIT 컴파일(Just-In-Time Compilation)**이 가장 중요한 요소입니다.이 두 가지 기능을 깊이 이해하면 JAX를 활용하여 고성능 모델을 구축할 수 있습니다.💡 1. 자동 미분 (Automatic Differentiation)자동 미분은 수학 함수의 미분을 기계적으로 계산하는 기법으로,기계 학습 모델의 학습 단계에서 필수적인 **기울기 계산(Gradient Calculation)**에 사용됩니다.✅ 자동 미분의 장점수학적 유도 불필요: 복잡한 미분 공식을 직접 계산할 필요가 ..
📌 JAX 기초 - 왜 JAX를 배워야 할까?🚀 JAX란 무엇인가?JAX는 Google에서 개발한 고성능 수치 계산 라이브러리로, GPU와 TPU를 활용하여 대규모 데이터를 빠르게 처리할 수 있는 특징을 가지고 있습니다.Python의 Numpy와 유사한 문법을 가지고 있어 직관적이면서도 강력한 성능을 제공합니다.💡 JAX의 주요 특징자동 미분 (Automatic Differentiation)JAX는 grad() 함수를 통해 매우 간단하게 미분을 수행할 수 있습니다.딥러닝 모델 학습 시 필수적인 기울기 계산이 간편합니다.JIT 컴파일 (Just-In-Time Compilation)JIT을 사용하여 성능을 크게 향상시킬 수 있습니다.반복되는 연산을 GPU 또는 TPU에서 빠르게 처리할 수 있습니다.함수..
- Total
- Today
- Yesterday
- rag
- PostgreSQL
- 관리자
- SEO최적화
- kotlin
- Docker
- Webpack
- App Router
- github
- AI챗봇
- CI/CD
- 개발블로그
- NestJS
- 백엔드개발
- gatsbyjs
- Python
- LangChain
- nextJS
- nodejs
- REACT
- 프론트엔드
- 웹개발
- Next.js
- fastapi
- seo 최적화 10개
- Ktor
- llm
- 프론트엔드면접
- SEO 최적화
- Prisma
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |